Những câu hỏi liên quan
Nguyễn Tuấn Khôi
Xem chi tiết
DTD2006ok
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2021 lúc 18:27

Bài này chỉ có min, không có max của A nhé bạn

Muốn có max thì x;y;z phải không âm

Bình luận (0)
Quyết Tâm Chiến Thắng
Xem chi tiết
Nguyễn Linh Chi
26 tháng 6 2020 lúc 10:27

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{6^2}{3}=12\)

Dấu "=" xảy ra <=> x = y = z = 2

GTNN của x^2 + y^2 + z^2 là 12 tại x = y = z = 2

Bình luận (0)
 Khách vãng lai đã xóa
Lê Đức Anh
Xem chi tiết
tth_new
1 tháng 12 2019 lúc 7:42

Em ko chắc lắm đâu, tại yếu dạng điểm rơi tại biên này lắm.

*Tìm min

Ta có: \(S\ge x^2+y^2+z^2+\frac{3}{2}xyz\) (cái này dễ chứng minh) (Đẳng thức xảy ra khi có một số = 0 (hoặc 2 số "=" 0) )

Ta chứng minh: \(x^2+y^2+z^2+\frac{3}{2}xyz\ge\frac{9}{2}=\frac{\left(x+y+z\right)^2}{2}\)

\(\Leftrightarrow x^2+y^2+z^2+3xyz\ge2xy+2yz+2zx\)

Do \(\left[x\left(y-1\right)\left(z-1\right)\right]\left[y\left(z-1\right)\left(x-1\right)\right]\left[z\left(x-1\right)\left(y-1\right)\right]\)

\(=xyz\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2\ge0\) nên tồn tại ít nhất 1 thừa số không âm. Ở đây em sẽ chứng minh trường hợp \(x\left(y-1\right)\left(z-1\right)\ge0\). Các trường hợp còn lại chứng minh tương tự.

Do \(x\left(y-1\right)\left(z-1\right)\ge0\Rightarrow3xyz\ge3xy+3xz-3x\)

Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+zx-3x-2yz\ge0\)

\(\Leftrightarrow x\left(x+y+z\right)+\left(y-z\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\) và các hoán vị.

*Tìm Max:

Chưa nghĩ ra.

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
1 tháng 12 2019 lúc 7:49

Chết,bài tìm min nhầm chút:(dòng 10)

Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+yz-3x-2yz\ge0\)

Ta có;\(VT=x\left(x+y+z-3\right)+\left(y-z\right)^2=\left(y-z\right)^2\ge0\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\)

Như vầy nha!

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
1 tháng 12 2019 lúc 8:03

*Tìm Max:

Dễ chứng minh:\(S\le x^2+y^2+z^2+6xyz\)

Như vậy ta chứng minh: \(x^2+y^2+z^2+6xyz\le9=\left(x+y+z\right)^2\)

\(\Leftrightarrow2\left(xy+yz+zx-3xyz\right)\ge0\)

BĐT này đúng vì \(xy+yz+zx-3xyz\ge3\left[\left(\sqrt[3]{xyz}\right)^2-\left(\sqrt[3]{xyz}\right)^3\right]\)

\(=3\left(\sqrt[3]{xyz}\right)^2\left[1-\sqrt[3]{xyz}\right]\ge3\left(\sqrt[3]{xyz}\right)^2\left(1-\frac{x+y+z}{3}\right)=0\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và các hoán vị.

Bình luận (0)
 Khách vãng lai đã xóa
dsadasd
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2021 lúc 16:08

\(P=x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^3=\dfrac{64}{3}\)

\(P_{min}=\dfrac{64}{3}\) khi \(x=y=z=\dfrac{4}{3}\)

Đặt \(\left(x;y;z\right)=\left(a+1;b+1;c+1\right)\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c\ge0\end{matrix}\right.\)

\(\Rightarrow0\le a;b;c\le1\) \(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\) \(\Rightarrow a^2+b^2+c^2\le a+b+c=1\)

\(P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\)

\(P=a^2+b^2+c^2+2\left(a+b+c\right)+3=a^2+b^2+c^2+5\le1+5=6\)

\(P_{max}=6\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(1;1;2\right)\) và hoán vị

Bình luận (0)
WTFシSnow
Xem chi tiết
Nguyễn Hoàng Đại
Xem chi tiết
Rin Huỳnh
1 tháng 9 2021 lúc 8:44

Chắc dùng Mincowski

Bình luận (0)
Trần Dương An
Xem chi tiết
Võ Phương Linh
Xem chi tiết
Akai Haruma
23 tháng 9 2021 lúc 18:07

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$

Tương tự:

$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$

$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$

Cộng theo vế:

$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)

Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$

Bình luận (1)